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Heat transfer in stabilized regimes of nonisothermal flows in a round tube and in channels with two-
dimensional convex cross sections is investigated with allowance for the velocity profile of a heating
or cooling flow of a fluid. Mathematical models of unsteady processes of cooling by convection and
radiation in pulling of rods and plane sheets at a constant velocity and of heat transfer (mass trans-
fer) in a thin running-down layer of a medium (fluid) are solved.

Theoretical studies of unsteady heat transfer in channels with convex cross sections (an ellipse, a
rhombus, an isosceles triangle, a sector of a circle, etc.) which are symmetric relative to the x-axis, in relative
variables

ξ = 
x

h
 ,   η = 

y

b
 ,   Fo = 

at

h2 ,   X = 
1

Pe
 
z

h
 ,   Pe = 

w0h

a
 ,   0 ≤ X < ∞ ,   0 ≤ Fo < ∞ ,

are related to a solution of the equation

∂T

∂Fo
 + w (ξ, η) 

∂T

∂X
 = 
∂2T

∂ξ2  + β 
∂2T

∂η2 + 
qv ψ0 (ξ, η) h2

λ
 f (X, Fo) ,   β = 

h2

b2 (1)

with different internal and external heat loadings, for instance, with the boundary conditions of the first kind

[T (ξ, η, X, Fo)]X=0 = ϕ0 (Fo) ,   [T (ξ, η, X, Fo)]Fo=0 = T0 ,   [T (ξ, η, X, Fo)]Γ = ϕ (ξ, X, Fo) , (2)

where Γ is the interior lateral surface of a thermally thin channel wall.
The numerical-analysis solving algorithm of [1] of the simultaneous use of the Laplace−Carson dou-

ble integral transformation [2] with respect to unilateral parabolic variables X and Fo and the method of finite
elements with implementation of the orthogonal projection of the discrepancy within the entire range of bilat-
eral elliptic coordinates ξ, η in the variety of the representation of the solution

T
__

n
 ∗  (ξ, η, s, p) = ϕ

__
 ∗  (ξ, s, p) +  ∑ 

k=1

n

 a
_

k
 ∗  (s, p) ψk (ξ, η) (3)

leads relative to the matrix-response Na
_
∗ (s, p)N to the equation

NA + sB + pCN Na
_

 ∗  (s, p)N = [T0 − ϕ
__

 ∗  (s, p)] p NNN + [ϕ
__

0 (p) − ϕ
__

 ∗  (s, p)] s NFN + 
qvh

2

λ
 f
_

 ∗  (s, p) NEN , (4)
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wherein, without loss of generality of the method, it is assumed that ϕ
__
∗ (ξ, s, p) = ϕ

__
∗ (s, p) and the matrix

elements are calculated by double integration over the free cross-sectional area D of a channel

Ajk = − ∫ 




∂2ψk

∂ξ2  + β 
∂2ψk

∂η2




 ψj dσ = ∫ 





∂ψk

∂ξ
 
∂ψj

∂ξ
 + β 

∂ψk

∂η
 
∂ψj

∂η




 dσ = Akj > 0 ,   Bjk = ∫ wψk ψjdσ = Bkj > 0 ,

Cjk = ∫ ψj ψkdσ = Ckj > 0 ,   Fj = ∫ wψjdσ ,   Nj = ∫ ψjdσ ,   Ej = ∫ ψ0 ψjdσ ,   dσ = dξdη .
(5)

The alternative of selecting the coordinate functions ψk(ξ, η) is confirmed for fulfillment of only the
homogeneous boundary conditions of the problem formulated, and for (2) we must have [ψk]Γ = 0. This al-
lows us to attain agreement with the boundary conditions in representation (3). Since the matrices NAN, NBN,
and NCN are symmetric and positive, the roots of the algebraic equations  A + sB  = 0,  A + pC  = 0, −s1

(n),
−s2

(n), ..., −sn
(n), −p1

(n), −p2
(n), ..., −pn

(n), will be real and negative (sk
(n) > 0, pk

(n) > 0).
With steady-state heat loadings where ϕ(X, Fo) = ϕ(X), f(X, Fo) = f(X), and ϕ0(Fo) = T0, in Eq. (1)

we have ∂T ⁄ ∂Fo = 0 and, according to the Cramer formula, from system (4) at p = 0 we obtain the following
expression:

ak
∗  (s) = 

∆k
 (F) (s) [T0 − sϕ∗  (s)]

∆ (s)
 + 

qvh
2

λ
 
∆k

 (E) (s) f ∗  (s)
∆ (s)

 ,

where ∆k
(M)(s) = Σ

j=1

n

 Mj∆jk(s), ∆jk(s) are the algebraic complements of the determinant ∆(s) =  A + sB ,

f ∗  (s) = ∫ 
0

∞

f (X) exp (− sX) dX ;   ϕ∗  (s) = ∫ 
0

∞

ϕ (X) exp (− sX) dX ,

i.e., T∗ (ξ, η, s) is already the Laplace transform. By decomposing the proper fractions ∆k
(F)(s)/∆(s) and

∆k
(E)(s) ⁄ ∆(s) into partial fractions in simple roots of the denominator, we obtain a synthesis of the elements of

the matrix-response Na∗ (s)N to sums of blocks of elementary thermoinertial links in the following form:

ak
∗  (s) =  ∑ 

i=1

n

 
∆k

 (F) (− si
 (n))

∆′ (− si
 (n))

 
T0 − sϕ∗  (s)

s + si
 (n)  + 

qvh
2

λ
  ∑ 

i=1

n

 
∆ (E) (− si

 (n))

∆′ (− si
 (n))

 
f ∗  (s)

s + si
 (n) ,   ∆

′ = 
d∆

ds
 . (6)

We set T0 − sϕ
__
∗ (s) =

.

.  Φ(X); then, with the aid of the convolution theory, representation (3) in the do-
main of inverse transforms can be written, after permutation of the orders of summation with respect to k and
i, as

Tn (ξ, η, X) = ϕ (X) +  ∑ 
i=1

n

  ∫ 
0

X

Φ (γ) exp [− si
 (n) (X − γ)] dγ ψi

 (n) (ξ, η) +

+ 
qvh

2

λ
  ∑ 

i=1

n

  ∫ 
0

X

f (γ) exp [− si
 (n) (X − γ)] dγ ϕi

 (n) (ξ, η) ,

where
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ψi
 (n) (ξ, η) =  ∑ 

k=1

n

 
∆k

 (F) (− si
 (n))

∆′ (− si
 (n))

 ψk (ξ, η) ;   ϕi
 (n) (ξ, η) =  ∑ 

k=1

n

 
∆k

 (E) (− si
 (n))

∆′ (− si
 (n))

 ψk (ξ, η) ,

As the wall temperature changes continuously with the temperature at the channel inlet (lim
X → 0

 ϕ(X) = T0) it

follows that −Φ(X) = 
dϕ
dX

 and the integral under the sign of the first sums is transformed to the form

 ∫ 
0

X

Φ (γ) exp [− si
 (n) (X − γ)] dγ = [T0 exp (− si

 (n)X) − ϕ (X)] + si
 (n) ∫ 

0

X

ϕ (γ) exp [− si
 (n) (X − γ)] dγ .

The results of systematic use of the solving algorithm show that sufficient accuracy of calculation of
the temperature fields is attained in the second or third approximations, while for heat-releasing fluids the
method of the optimum selection of basis coordinate functions leads to a high accuracy of representation of
the temperature already in the first approximation [1, 3, 4].

For the sake of simplicity and illustration, we will consider unsteady heat transfer in a round tube (m
= 1, 0 ≤ ξ = r ⁄ R = 1) and a plane channel (m = 0, −1 ≤ ξ = x ⁄ R ≤ 1) as a solution of the problem

∂T

∂Fo
 + w (ξ, m) 

∂T

∂X
 = 

1

ξm 
∂

∂ξ
 



ξm 

∂T

∂ξ




 + 

qvR
2

λ
 ψ0 (ξ) f (X, Fo) ,   [T (ξ, X, Fo)]Fo=0 = T0 ; (7)

[T (ξ, X, Fo)]X=0 = ϕ0 (Fo) ,   




∂T

∂ξ
 + Bi T (ξ, X, Fo)



 ξ=1

 = Bi [ϕ (X, Fo) + q (X, Fo) ⁄ α] ,   




∂T

∂ξ


 ξ=0

 = 0 . (8)

The temperature in the Laplace−Carson transforms is found in the variety

T
__

n
 ∗  (ξ, s, p) = Φ

__
 ∗  (s, p) +  ∑ 

k=1

n

 a
_

k
 ∗  (s, p) ψk (ξ) ,   ψk (ξ) = 

Bi + 2k
Bi

 − ξ2k ,   Φ
__

 ∗  = ϕ
__

 ∗  + q
_ ∗  ⁄ α (9)

and the coefficients in system (4) are calculated from the formulas

Ajk = − ∫ 
0

1
∂
∂ξ

 



ξm 

∂ψk

∂ξ



 ψjdξ = ∫ 

0

1
∂ψk

∂ξ
 
∂ψj

∂ξ
 ξmdξ + Bi ψk (1) ψj (1) = Akj > 0 ;   Cjk = ∫ 

0

1

ψj ψkξ
mdξ = Ckj > 0 ;

Bjk = ∫ 
0

1

wψk ψjξ
mdξ = Bkj > 0 ;   Fj = ∫ 

0

1

wψjξ
mdξ ;   Nj = ∫ 

0

1

ψjξ
mdξ ,   Ej = ∫ 

0

1

ψ0 ψjξ
mdξ . (10)

The equations of energy (heat) transfer (1) and (7) are written from a system of Navier−Stokes equations as
particular cases of the motion of media in channels. They will become closed if a stabilized velocity field is
found by solving the Poisson equations

∂2W

∂ξ2  + β 
∂2W

∂η2  = 
h2

µ
 
∂�
∂z

 ,   
1

ξm 
∂
∂ξ

 



ξm 

∂W

∂ξ



 = 

R2

µ
 
∂P
∂z

 ,   β = 
h2

b2 ,   m = 0; 1 , (11)
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with the zeroth boundary conditions over the wetted surface, which are also written from the Navier−Stokes
system. We would like to recall that the velocity w = W ⁄ w0 enters into (1) and (7).

In all the known solutions of the problems of heat transfer in straight channels, beginning with the
classical investigations of Gretz and Nusselt, stabilized velocities have been considered only in isothermal
flows, i.e., with the aid of the solution of Eqs. (11) for constant coefficients of dynamic viscosity

µ


1
µ

 
∂P
dz

 = const

. Meanwhile, the process of heat transfer occurs almost without exception with nonuniform

temperature distributions in a fluid flow, i.e., under conditions of nonisothermal flow even in stabilized re-
gimes. Substantiation of the solutions of Eq. (1) without account for the contribution of heat conduction along
the channel, when the heat-technology system becomes inertial over the unilateral coordinate X, and the in-
fluence of this term on heat transfer in liquid-metal heat-transfer agents are discussed in [5].

Let us assume that in channels with a two-dimensional cross-sectional profile the steady-state tem-
perature distribution, which depends on ξ or ξ, η, is established in a fluid flow with time and along the tube.
Since the dynamic viscosity µ mainly depends on temperature, with such a temperature distribution the coef-
ficients k = µ−1 of the motive force of the fluid on the right-hand sides of the Poisson equations will be a
function of the coordinates ξ, η as well. Let the coefficient k = µ−1 be interpolated by the function ϕ(ξ, δ)
in the form k = (ξ, δ) = ϕ(ξ, δ)/µ0 , where ϕ(0, δ) = 1, and the steady-state motion of a viscous fluid in a
round tube be determined by a solution of the equation

1
ξ

 
∂
∂ξ

 



ξ 
∂W

∂ξ



 = − 

R2ϕ (ξ, δ)
µ0

 
∆P

l
 ,   

∂P
∂z

 = − 
∆P

l
 . (12)

We set ϕ(ξ, δ) = 1 + δξ; then the linear change in the force of fluid transfer along the running radius ξ forms
the velocity profile of the heating fluid (Tw > T0) for δ > 0 and of the cooling fluids (Tw < T0) for δ < 0. When
[W]Γ = 0 the equation has the solution

W (ξ, δ) = 
R2

36µ0
 
∆P

l
 [9 + 4δ − (9ξ2 + 4δξ3)] .

From the condition of conservation of the incompressible-fluid mass πR2w0 = ∫ 
0

2π

dϕ∫ 
0

1

Wξdξ, we find w0; then

the volumetric flow rate of the fluid and the velocity of the nonisothermal flow are equal:

V = πR2w0 = 
πR4 (45 + 24δ)

360µ0
 
∆P

l
 ,   w (ξ, δ) = 

W
w0

 = 
2 (1 + 0.444δ)

1 + 0.533δ
 



1 − 

9ξ2 + 4δξ3

9 + 4δ



 . (13)

In heating of the fluid (δ > 0, Tw > T0), the maximum velocities in the flow core are as follows:

W (0, 0.2) = 1.968w0 ;   W (0, 0.6) = 1.919w0 ;   W (0, 0.8) = 1.900w0 ;   W (0, 0.98) = 1.884w0

and in cooling (δ < 0, Tw < T0) they are

W (0, −0.2) = 2.040w0 ;   W (0, −0.6) = 2.156w0 ;   W (0, −0.8) = 2.247w0 ;   W (0, −0.98) = 2.364w0 .

In cooling of the fluid via the surface of the round tube, an inflection point exists in the stabilized
velocity profile [6], and at this point d2W ⁄ dξ2 = 0. From the solution (13) we have d2W ⁄ dξ2 = 18 + 24δξ =
0, whence, as it must, the inflection point is found just for δ < 0. For δ = −0.8 inflection occurs at ξ = 0.95,
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while for δ = −0.98 when µw
 ⁄ µ0 = µ(1, δ)/µ(0, δ) = 50 inflection in the velocity profile occurs in the zone

ξ = 0.77. The velocity profiles for δ = 0.98, δ = 0, and δ = −0.98, which correspond to µw
 ⁄ µ0 = µ(1)/µ(0)

= 0.5, µw
 ⁄ µ0 = 1, and µw

 ⁄ µ0 = 50, are shown in Fig. 1.
With another form of change in the local distribution of the dynamic viscosity µ(ξ, δ) = µ0 exp

(−δξ) where, as in the case δ > 0, the fluid is heated and for δ < 0 is cooled, integration of Eq. (12) with the
right-hand side −R2µ0

−1 exp (δξ)∆� ⁄ l yields

 W (ξ, δ) = 
w0

2H (δ)
 




exp (δ) − exp (− δξ)
δ2  − 

1 − ξ

δ
 − 

1 − ξ2

4
 − δf (ξ, δ)




 ;   f = 

1 − ξ3

3 ⋅ 3 !
 + 

1 − ξ4

4 ⋅ 4 !
 + ... ; (14)

w0 = 
2R2

µ0

 
∆P

l
 H (δ) ;   H (δ) = 

exp (δ) (3δ2 − 6δ + 6) − (6 + δ3)
6δ4  − 

1

16
 − δ ∫ 

0

1

f (ξ, δ) ξdξ ,

from which and also from (13) we obtain the known Poiseuille formulas for isothermal flow

   lim
δ→0

  W (ξ, δ) = W (ξ, 0) = 2w0 (1 − ξ2) ,   w0 = 
R2

8µ0
 
∆P

l
 .

Let us consider solutions of the first equation of (11) with variable viscosities µ, for which the en-
forced flow of the fluid with constant pressure gradient ∂P ⁄ ∂z = −∆P ⁄ l = const is initiated by the variable
force

h2

µ
 
∂P
∂z

 = − 
h2

µ0
 
∆P

l
 ϕ (ξ, η, δ) .

In the case of laminar isothermal or even nonisothermal flows of the fluids in channels with two-dimensional
profiles of the cross sections, the velocity fields will depend in many respects on the geometry of the free
cross-sectional area. Therefore, in the variety of the representation of the solutions in alternative spaces

Wn (ξ, η) =  ∑ 

k=1

n

 ak ψk (ξ, η) ,   [ψk (ξ, η)]Γ = 0 , (15)

it is more expedient and natural to use the basis coordinate functions ψk(ξ, η) = ω(ξ, η)ξ(k−1)η2(k−1), where

ω(ξ, η) is the composite boundary function for the channels mentioned at the beginning of the paper. In

Fig. 1. Velocity profiles of nonisothermal flow in a round tube: 1) heat-
ing of the fluid for µw

 ⁄ µ0 = 0.5; 2) cooling of the fluid for µw
 ⁄ µ0 = 50;

3) isothermal flow for µw
 ⁄ µ0 = 1.
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structure of the representation, ω(ξ, η) > 0 inside the channel and is equal to zero over the wetted surface.
We determine the solutions for such variable forces of fluid motion, under the action of which the exact
velocity fields are expressed by one spectrum along the first principal axis in the variety of representation
(15) .  For a  channel of isosceles triangular cross section with height h and base 2b:

D



y ≤ 

b
h

 x, y ≥ − 
b
h

 x, 0 ≤ x ≤ h



 the composite boundary function is

ω (ξ, η) = (ξ2 − η2) (1 − ξ) ,   0 ≤ ξ = 
x
h

 ≤ 1 ;   − 1 ≤ η = 
y
b

 ≤ 1 .

If, in the first equation of (11), we set 

h2

µ
 
∂P
∂z

 = − 
h2 [(δ − 1) + ξ (3 − δ)]

2µ0
 
∆P

l
 ,   δ = β , (16)

then the application of the orthogonal projection of the discrepancy to the solution W(ξ, η) = a1ω(ξ, η) yields
the equality

 ∫ 
0

1

∫ 
0

ξ








∂2ω
∂ξ2  + β 

∂2ω
∂η2




 + 

h2 [(δ − 1) + ξ (3 − δ)]
2µ0

 
∆�

l




 ω (ξ, η) dξdη = 0 ,

from which we find a1 = 
h2

4µ0
 
∆P

l
 and, expressing a1 in terms of the mean velocity w0, we arrive at

W (ξ, η) = 15w0 (ξ
2 − η2) (1 − ξ) ,   w0 SD = 

bh3

60µ0
 
∆P

l
 ,   max W = W 



2
3

, 0

 = 2.22w0

(17)

which is an equally exact solution for all the channels with isosceles triangular cross sections where the
nonuniform force of fluid motion is prescribed in the form of (16). For an equilateral triangular cross section
δ = β = h2 ⁄ b2 = 3 and a mass-moving force, (16) passes to the constant value −(µ0

−1h2∆P ⁄ l = const), i.e., in
all triangular channels just with three equal walls the stabilized velocity field of the isothermal flow is exactly
expressed in terms of the composite boundary function. Inside the channel with the profile of a right triangle
(β = 1), the exact value of the velocity (17) is created by the force −µ0

−1h2ξ∆P ⁄ l.
For the rectangular channel D{−h ≤ x ≤ h, −b ≤ y ≤ b} with the composite boundary function ω(ξ, η)

= (1 − ξ2)(1 − η2), the exact solution of the first equation of (11) with the force of fluid transfer
−h2µ0

−1[(1 − η2) + β(1 − ξ2)]∆� ⁄ l is

W (ξ, η) = 2.25w0 (1 − ξ2) (1 − η2) ,   w0 = 
h2

4.5µ0
 
∆P

l
 ,   max W = 2.25w0 .

Curiously, the dimensionless velocity w(ξ, η) = W ⁄ w0 is a result of the superposition (multiplication) of two
profiles of Poiseuille velocities w(ξ) = 1.5(1 − ξ2) and w(η) = 1.5(1 − η2) in plane-parallel channels.

Inside a cylindrical tube with an elliptic profile of the free cross-sectional area, the velocity field of
the stabilized isothermal flow is exactly expressed by the composite boundary function ω(ξ, η)  =
1 − ξ2 − η2 in the form

W (ξ, η) = 2w0 (1 − ξ2 − η2) ,   w0 = 
h2

4µ0 (1 + β)
 
∆P

l
 .
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In all the solutions found, the lines of equal velocities vi = const (isotachs) related to the mean ve-
locity w0 are determined by the equations W ⁄ w0 = w(ξ, η) = vi = const, i = 1, n, where 0 ≤ vi ≤ 2.2 for an
isosceles triangular cross section, 0 ≤ vi ≤ 2.25 for a rectangular cross section, and 0 ≤ vi ≤ 2 for an elliptic
tube. The isotachs in a geometric set are quasisimilar to the closed composite boundary line, i.e., similar to
the profile of the free cross-sectional area of the channel. The zero isotach on the wetted surface is equal to
ω(ξ, η) = 0.

We proceed to an investigation of the processes of heat transfer with different forms of stabilized
velocities under the conditions of isothermal flow with allowance for heating or cooling of the fluid via the
channel walls. We introduce the value of the velocity (13) into formulas (10) and calculate the coefficients of
the determining system for a round tube with boundary conditions of the first kind, i.e., with ψk(ξ) =
1 − ξ2k and m = 1; then

 Bjk = 
2 (1 + 0.444δ)

1 + 0.533δ
 




kj (k + j + 2)
2 (k + 1) ( j + 1) (k + j + 1)

 − 
1

9 + 4δ
 




9kj (k + j + 4)
4 (k + 2) ( j + 2) (k + j + 2)

 +

+ 
32δkj (k + j + 5)

5 (2k + 5) (2j + 5) (2k + 2j + 5)



  



 = Bkj > 0 ;

Akj = 
2kj

k + j
 = Ajk > 0 ;   Cjk = 

kj (k + j + 2)
2 (k + 1) ( j + 1) (k + j + 1)

 = Ckj > 0 ;

Fj = 
2 (1 + 0.444δ)

1 + 0.533δ
 




j

2 ( j + 1)
 − 

1
9 + 4δ

 




9j
4 ( j + 2)

 + 
8δj

5 (2j + 5)







 ;

Nj = 
j

2 ( j + 1)
 ;   Ej = Nj ;   ψ0 (ξ) = 1 .

Representation of the matrix elements in terms of the subscripts allows us to write the determining system (4)
of any order in explicit form for the fixed parameter δ. Using the formulas of synthesis of the elements of
the matrix-response �a∗ (s)� in the form (6), we determine ak(X) with concrete steady-state heat loadings along
the tube on the wall ϕ(X) and the functions of loading of the internal sources f(X), and the solution is found
in the form

T (ξ, X) = ϕ (X) +  ∑ 

k=1

n

 ak (X) (1 − ξ2k) .

From the truncated system of first order without the internal source (ψ0(ξ) = 0), we have

a1
∗  (s) = 

[T0 − sϕ∗  (s)] F (δ)

s + s1
 (1) (δ)

 ,   s1
 (1) (δ) = 

4 (1 + 0.533δ)

1 + 0.444δ
 ,   F (δ) = 

4 (1 + 0.5143δ)

3 (1 + 0.5342δ)
 ,

from which at a constant wall temperature (ϕ(X) = Tw), when the fluid is heated (Tw > T0, δ > 0) or cooled
(Tw < T0, δ < 0), the temperature changes, including heat transfer in the case of Poiseuille isothermal flow of
the fluid (δ = 0), are given by the single formula

T (ξ, X, δ) = Tw + F (δ) (T0 − Tw) (1 − ξ2) exp [− s1
 (1) (δ) X] . (18)
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For δ = 0.2, 0.9, δ = 0, and δ = −0.2, −0.9 the relative excess temperature fields are reduced to the expres-
sions

Θ (ξ, X, 0.2) = 
T − Tw

T0 − Tw
 = 1.336 (1 − ξ2) exp (− 4.023X) ;   Θ (ξ, X, 0.9) = 1.342 (1 − ξ2) exp (− 4.229X) ;

Θ (ξ, X, 0) = 
T − Tw

T0 − Tw
 = 1.333 (1 − ξ2) exp (− 4.000X) ;

Θ (ξ, X, − 0.2) = 
T − Tw

T0 − Tw
 = 1.331 (1 − ξ2) exp (− 3.974X) ;   Θ (ξ, X, − 0.9) = 1.314 (1 − ξ2) exp (− 3.469X) .

(19)

Solutions in the second and subsequent approximations should be refined for the concrete parameter δ. For
the heated fluid with δ = 0.2 in the second approximation we have

Θ (ξ, X, 0.2) = (1.448 − 2.229ξ2 + 0.781ξ4) exp (− 3.687X) + (− 0.623 + 3.889ξ2 − 3.266ξ4) exp (− 35.880X) .

The values of the temperature to the fourth order of approximations of isothermal (δ = 0) flow are found in
[1], from which it follows in the second approximation that

Θ (ξ, X, 0) = (1.437 − 2.228ξ2 + 0.791ξ4) exp (− 3.670X) + (− 0.604 + 3.896ξ2 − 3.292ξ4) exp (− 36.330X) .

Since the theoretical studies of the rate of convergence of the approximate solutions found by the
suggested method allow us to assert that a sufficient accuracy of calculation is attained already from the sec-
ond approximation, based on the results obtained we can draw conclusions on the regularities of heat transfer
in the cases where the stabilized velocity is formed by a nonisothermal flow. From the solutions it follows
that in heating (Tw > T0, δ > 0) the rate of exponential stabilizations of the temperature fields, the local heat
fluxes, and the Nusselt numbers are higher, while in cooling (Tw < T0, δ < 0) they are lower than in the case
of Poiseuille isothermal flow of the fluid.  Although for the velocity profile (13) such a regularity is mani-
fested still weakly, for more abrupt changes in the moving force, for instance, in the case of fluid motion
with the velocity (14) for δ = ±3, this difference becomes already more pronounced.

We determine the change in the temperature in the fluid flow with stabilized velocity (13) with a
linear rise in the temperature over the tube surface in the form ϕ(X) = T0 + ∆T

~
X. Behind the portion of ther-

mal stabilization the temperature field becomes self-similar and is expressed in the form

T (ξ, X, δ) = T0 + ∆T
~

X + Φ (ξ, δ) ,   ∆T
~

 = Pe R∆T ,   ∆T = 
dϕ
dz

 ,

where the function Φ(ξ, δ) is found by solving the problem

w (ξ, δ) ∆T
~

 = 
1
ξ

 
d
dξ

 



ξ 

dΦ
dξ



 ,   [Φ (ξ, δ)]ξ=1 = 0 ,   





dΦ
dξ


 ξ=0

 = 0

and is equal to

18 (1 + 0.533δ)
∆T

~  Φ (ξ, δ) = ψ (ξ, δ) = (6.75 + 3.36δ) − (9 + 4δ) ξ2 + 2.25ξ4 + 0.64δξ5 .
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According to the method of selection of the optimum basis coordinate functions [1], we should take ψ1(ξ) =
ψ(ξ, δ); then from the equation

a1
∗  (s) (A11 + B11s) = [T0 − sϕ∗  (s)] F1 ,   ϕ

∗  (s) = T0
 ⁄ s + ∆T

~ ⁄ s
2 ,

we find

a1
∗  (s) = − 

F1∆T
~

s (s + s1
 (1)) B11

 = − 
F1∆T

~

A11

 




1

s
 − 

1

s + s1
 (1) (δ)




 ,   s1

 (1) (δ) = 
A11

B11

 ,

and the solution is reduced to the form

T (ξ, X, δ) = T0 + ∆T
~

X − 
∆T

~

18 (1 + 0.533δ)
 [6.75 + 3.36δ − (9 + 4δ) ξ2 + 2.25ξ4 +

+ 0.64δξ5] [1 − exp (− s1
 (1) (δ) X)] , (20)

where, with the purpose of decreasing the number of intermediate calculations, the coefficients A11, B11, and
F1 should be calculated from formulas (10) for m = 1 with the concrete parameter δ. On the whole, after the
interval of the transient regime this expression will coincide with the exact solution with the structure of
temperature representation. For a laminar isothermal flow with the velocity w(ξ, 0) = 2(1 − ξ2) we have

T (ξ, X, 0) = T0 + ∆T
~

X − 
∆T

~

8
 (3 − 4ξ2 + ξ4) [1 − exp (− 3.729X)] , (21)

while with the velocity w(ξ, 0.8) = 1.9(1 − 0.738ξ2 − 0.262ξ3) the temperature field is represented by the for-
mula

T (ξ, X, 0.8) = T0 + ∆T
~

X − 0.475∆T
~

 (0.774 − ξ2 + 0.184ξ4 + 0.042ξ5) [1 − exp (− 4.444X)] . (22)

Behind the tube inlet from the solution (21) we obtain the exact self-similar temperature representation which
was found by Eagle and Fergusson [7].

Performing differentiation of the solution (21), we determine the heat flux in the case of isothermal
flow

q (X) = − 
λ
R

 




∂T

∂ξ


 ξ=1

 = 
λ∆T

~

2R
 [1 − exp (− 3.729X)] ,   q~ (X) = 

q (X) R
λ ∆T

~  = 0.5 [1 − exp (− 3.729X)] ,

and from the temperature field in the second approximation we obtain

q~ (X) = 0.5 [1 − 0.734 exp (− 3.662X) − 0.266 exp (− 30.863X)] .

From the solution (22) with the fluid heated by the linear rise in the wall temperature with allowance
for the nonisothermicity of the flow, when the coefficient k = µ−1 at the transfer force is interpolated by the
linear function of the running radius ξ = r ⁄ R, the specific heat flux is

q~ (X) = 0.5 [1 − exp (− 4.444X)] .

The rate of exponential stabilization of the temperature in exact solutions in the case of isothermal
flow is determined by the first eigenvalue s1(0) = 3.658. In the approximate solution (21), this rate is s1

(1)(0)
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= 3.729 and it is closer to the exact value than in (19). This is because the temperature (21) was found in
the space with the optimum coordinate function ψ1(ξ) = 3 − 4ξ2 + ξ4. The heat-transfer rate s1

(1)(0.8) deter-
mines the temperature in the fluid flow with the more filled velocity profile w(ξ,  0.8) = 1.9(1
− 0.738ξ2 − 0.262ξ3) than in the Poiseuille flow, i.e., we must have s1(0.8) > 3.658. Therefore, we may con-
sider that the value s1

(1)(0.8) = 4.444, just as the value s1
(1)(0) = 3.729, is found with sufficient accuracy.

Similar studies of heat transfer can be carried out for problems with external loadings, at which the
wall temperature ϕ(X) on a small initial portion of the channel becomes the linear function T0 + ∆T

~
X. The

limiting exact self-similar solutions will depend on the kinds of velocities of nonisothermal flows created by

different transfer forces 
h2

µ
 
∂�
∂z

 = 
h2ϕ(ξ,δ)
µ0

 
∂P
∂z

.

Now we will provide calculation of heat transfer in the flow of a heat-releasing fluid with allowance
for nonisothermal flow when the coefficient k = µ−1 of the moving force of transfer is interpolated by a
quadratic function, i.e., 

 
1
µ

 
∂P
∂z

 = − 
(1 + δξ2)

µ0
 
∆P

l
 .

The solution of the second equation of (11) with such a right-hand side for a round tube is

W (ξ, δ) = 
3w0

2 (3 + δ)
 [4 + δ − (4ξ2 + δξ4)] ,   w0 = 

R2 (3 + δ)
24µ0

 
∆P

l
 .

From the equation d2W ⁄ dξ2 = 2 + 3δξ2 = 0 it follows that in the velocity profile the inflection point exists
for  δ < 0, i.e., only the cooling fluid has such a point. For δ = −0.8 the inflection point is in the zone ξ =
0.9, while for δ = −0.9 it is in the zone ξ = 0.85. The dimensionless velocities related to the mean value of
w0 for the three δ are

w (ξ, 0) = 2 (1 − ξ2) ;   w (ξ, − 0.8) = 2.182 (1 − 1.25ξ2 + 0.25ξ4) ;   w (ξ, − 0.9) = 2.214 (1 − 1.29ξ2 + 0.29ξ4) .

Since for δ   < 1 the following expansion in a power series holds true:

µ = 
1

k
 = 

µ0

1 + δξ2 = µ0 (1 − δξ2 + δ2ξ4 − δ3ξ6 + ...) ,

the coefficient of dynamic viscosity can also be represented by the quadratic function µ(ξ, δ) = µ0(1 − δξ2),
where δ < 0 in cooling of the fluid and δ > 0 in its heating.

The temperature fields in the optimum Riemann space for a round tube with the internal source
qv(ξ) = qv = const in removal of heat to the external medium with a constant temperature equal to the fluid
temperature at the tube inlet T0 for the cases f(X) = 1 and f(X) = 1 −  exp (−Pd X) are reduced to the expres-
sions

T (ξ, X, δ) = T0 + 
qvR

2

4λ
 




Bi + 2
Bi

 − ξ2


 [1 − exp (− s1

 (1) (Bi, δ) X)] ,

T (ξ, X, Bi, δ, Pd) = T0 + 
qvR

2

4λ
 




Bi + 2

Bi
 − ξ2



 






1 − 

Pd exp (− s1
 (1) (Bi, δ) X) − s1

 (1) (Bi, δ) exp (− Pd X)

Pd − s1
 (1) (Bi, δ)







 , (23)
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where

s1
 (1) (Bi, 0) = 

12 Bi (Bi + 4)
3 Bi2 + 16 Bi + 24

 ;   s1
 (1) (Bi, − 0.9) = 

3.836 Bi (Bi + 4)
Bi2 + 5.251 Bi + 7.572

 .

After entering the tube for X ≥ L, where exp [−s1
(1)(Bi, δ)X] ≈ 0 and exp (−PdX) ≈ 0, the following exact

temperature distribution is established in the heat-releasing fluid:

T (ξ, Bi) = T0 + 
qvR

2

4λ
 




Bi + 2

Bi
 − ξ2


 . (24)

If, with the external linear temperature loadings on the wall, the self-similar exact representation of the tem-
perature in the fluid flow depends on the velocity profiles of nonisothermal and even isothermal flows, the
limiting solution (24) is no longer related to the character of the established velocity w(ξ, δ). However, the
reduced length L will depend on the extent of filling of the velocity profile. As a more uniform filling is
approached, this length decreases and for w(ξ, δ) = 1 takes on its minimum value. As the velocity in the flow
core increases, the length of the thermal-stabilization portion increases. For instance, for Bi = 0.5, 1, 4, 10,
and ∞ the rate of stabilization of heat transfer in the isothermal flow s1

(1)(Bi, 0) takes on the values 0.824,
1.395, 2.824, 3.471, and 4.000, while in the case of cooling we have 0.818, 1.378, 2.748, 3.359, and 3.836
for s1

(1)(Bi, −0.9). Consequently, the length of the thermal-stabilization portion under cooling conditions is
larger than for the same values of Bi in the problem with isothermal flow. From this viewpoint, it is of
interest to solve a mathematical model of the process, in which the steady-state part of the distribution of the
heat sources qv(ξ) = qv(1 + βξ2) is prescribed for β > 1. Since for β >> 1 the fluid will be heated even in the
case of heat removal owing to the substantial heat release in the near-wall layer, the moving force of heat
transfer and the velocity w(ξ, δ) must be determined for δ > 0. In the case of the parabolic distribution qv(ξ)
the optimum coordinate function is ψ1(ξ) = [4(2 + β) + Bi(4 + β) ⁄ Bi] − (4ξ2 + βξ4) and the temperature with
boundary conditions of the first kind (Bi = ∞, Tw = T0) for β = δ = 2 is reduced to the form

 T (ξ, X) = T0 + 
qvR

2

8λ
 (3 − 2ξ2 − ξ4) [1 − exp (− 4.308X)] ,

while for isothermal flow when δ = 0 and β = 2 we have

T (ξ, X) = T0 + 
qvR

2

8λ
 (3 − 2ξ2 − ξ4) [1 − exp (− 4.416X)] .

For β = 2, a large amount of heat is released in the near-wall fluid layer, and it is rapidly removed, almost
without conduction, into the external medium, which in the representations of the temperatures in terms of
one principal thermoinertial link in the optimum Riemann spaces leads to the more overstated coefficients
4.308 and 4.416 than for qv(ξ) = qv = const (4.000). We provide one more informative case where the para-
bolic distribution of the heat sources for β = −1 coincides with an accuracy of up to a constant factor with
the velocity profile of isothermal flow. Then with a linear rise in the tube-wall temperature the procedure of
implementation of the method in the variety of the representation T∗ (ξ, s) = ϕ∗ (s) + Σak

∗ (s)ψk(ξ) along the prin-
cipal axis ψ1(ξ) = 3 − 4ξ2 + ξ4 leads to the solution

T (ξ, X) = T0 + ∆T
~

X + 




qvR
2

16λ
 − 
∆T

~

8




 (3 − 4ξ2 + ξ4) [1 − exp (− 3.729X)] ,
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which exactly satisfies the initial condition at the tube inlet and the temperature regime on the tube wall,
while the self-similar solution coincides with the exact temperature. This property is retained for a series of
problems in which the unsteady amplitude f(Fo) of disturbance in the source qv(1 − ξ2)f(Fo) on the small time
interval Fo changes to the steady one (f(Fo) = 1 8 Fo ≥ Fo1).

Thus, the thermoinertial system of continuum mechanics which models the process of convective heat
transfer in channels will have the highest rate of stabilization when fluid flow is of the piston type. Below,
we provide the suggested method for such cases using the solution of the boundary-value problem (7) and (8)

as an example. We set w(ξ, δ) = 1, ψk(ξ) = 
Bi + 2k

Bi
 − ξ2k, and ψ0(ξ) = 1; then the coefficients (10) are easily

expressed in terms of the subscripts k and j, the Bi number, and the parameter m, which allows us to write
the determining system (4) of any order in explicit form with a particular Bi number for a plane channel and

a round tube individually. Since NBN = NCN and NNN = NFN = NEN, the coefficients a
_

k
∗ (s, p) in the tempera-

ture representation (9) are equal to

a
_

k
 ∗  (s, p) = 

∆k
 (F) (z)
∆ (z)

 



p [T0 − Φ

__
 ∗  (s, p)] + s [ϕ

__
0 (p) − Φ

__
 ∗  (s, p)] + 

qvR
2

λ
 f
_

 ∗  (s, p)



 , 

where ∆(z) =  A + zC ; z = p + s; ∆k
(F)(z) = Σ

j=1

n

 Fj∆jk(z); ∆jk are the algebraic complements of the main deter-

minant ∆(z). Let −z1
(n) < 0, −z2

(n) < 0, ..., −z(n) < 0 be the roots of the equation ∆(z) =  A + zC  = 0; then the

positive numbers z1
(n), z2

(n), ..., zn
(n) form, obviously, a sequence of approximate eigenvalues for the problems of

heat conduction in a plate or in a solid round cylinder. Expanding the proper fraction ∆k
(F)(z)/∆(z) in simple

poles, we obtain a synthesis of the elements of the matrix-response Na
_
∗ (s, p)N in the form

a
_

k
 ∗  (s, p) =  ∑ 

i=1

n

 
∆k(F) (− zi

 (n))

∆′ (− zi
 (n))

 










p [T0 − Φ
__

 ∗  (s, p)]

p + s + pi
 (n)  + 

s [ϕ
__

0 (p) − Φ
__

 ∗  (s, p)]

p + s + pi
 (n)  + 

qvR
2

λ
 

f
_

 ∗  (s, p)

p + s + pi
 (n)










 ,   ∆′ = 

d∆

dz
 , 

where pi
(n) = zi

(n). The projection a
_

k
∗ (s, p) in the temperature representation (9) along the ψk-axis of the alter-

native space is decomposed into sums of blocks of responses of elementary two-parameter thermoinertial
links to the external ϕ

__
0(p), Φ

__
∗ (s, p) and internal f

_
∗ (s, p) heat loadings. From the truncated system of first

order we write

a
_

1
 ∗  (s, p) = 

F1

C11

 










p [T0 − Φ
__

 ∗  (s, p)]

p + s + p1
 (1) (Bi, m)

 + 
s [ϕ
__

0 (p) − Φ
__

 ∗  (s, p)]

p + s + p1
 (1) (Bi, m)

 + 
qvR

2

λ
 

f
_
 ∗  (s, p)

p + s + p1
 (1) (Bi, m)










 , (25)

where

p1
 (1) (Bi, m) = 

A11

B11

 = 
Bi (m + 1) (m + 5) [Bi + (m + 3)]

2 Bi2 + 2 (m + 5) Bi + m2 + 8m + 15
 ,   

F1

C11

 = 
p1

 (1) (Bi, m)

2 (m + 1)
 .

With spasmodic constant loadings (ϕ0(Fo) = T0, Φ(X, Fo) = Tw + q ⁄ α, f(X, Fo) = 1) we introduce the values
of ϕ
__

0(p) = T0, Φ
__
∗ (s, p) = Tw + q ⁄ α, f

_
∗ (s, p) = 1 into formula (25); then
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a
_

1
 ∗  (s, p) = 

p1
 (1) (Bi, m)

2 (m + 1)
 = 











[T0 − (Tw + q ⁄ α)] (p + s)

p + s + p1
 (1) (Bi, m)

 + 
qvR

2

λ
 

1

p + s + p1
 (1) (Bi, m)










 .

According to the inversion formula [2] for the double integral transformation

ap + bs

A + Bs + Cp
 =..
..
 











a ⁄ C exp 

− 

A
C

 Fo

  for  X > 

B
C

 Fo

b ⁄ B exp 

− 

A
B

 X

  for  X < 

B
C

 Fo










 ,   

1
A + Bs + Cp

 = 
1
A

 



1 − 

Bs + pC

A + Bs + Cp





the combined relative excess temperature from T
__
∗ (ξ, s, p) = Tw + q ⁄ α + a

_
1
∗ (s, p)





Bi + 2
Bi

 − ξ2

 is reduced to

the formula

Θ (ξ, X, Fo, Bi, m) = 
T − (Tw + q ⁄ α)
T0 − (Tw + q ⁄ α)

 = 
p1

 (1) (Bi, m)
2 (m + 1)

 




Bi + 2

Bi
 − ξ2


 










exp [− p1
 (1) (Bi, m) Fo]  for  X > Fo

exp [− p1
 (1) (Bi, m) X]  for  X < Fo










 +

 + 
qvR

2

2λ (m + 1) [T0 − (Tw + q ⁄ α)]
 




Bi + 2

Bi
 − ξ2


 










1 − exp [− p1
 (1) (Bi, m) Fo]   X > Fo

1 − exp [− p1
 (1) (Bi, m) X]   X < Fo










 . (26)

If it is necessary to refine solutions, in the subsequent approximations the relative temperature without a heat
source is reduced to the form

Θn (ξ, X, Fo, Bi, m) =  ∑ 

i=1

n

 ψi
 (n) (ξ, Bi, m) exp [− pi

 (n) (Bi, m) f] ,

where f = Fo for X > Fo and f = X for X < Fo. The functions ψi
(n) and the eigenvalues pi

(n) should be found
from the determining system composed for fixed Bi and m.

The local heat flux over the round-tube surface and the mean-integral temperature in the third ap-
proximation with boundary conditions of the first kind are equal to

q~ (X, Fo) = 
q (X, Fo) R
λ (T0 − Tw)

 = − 




∂Θ
∂ξ


 ξ=1

 = 2.022 exp (− 5.783f) + 1.654 exp (− 30.712f) +

+ 11.346 exp (− 113.503f) ,

sΘ (X, Fo)t = 2 ∫ 
0

1

Θξdξ = 0.692 exp (− 5.783f) + 0.136 exp (− 30.712f) + 0.110 exp (− 113.503f) .

Problems of convective heat transfer in tubes and channels with piston flows can be considered as
problems of heat transfer with uniform motion of rods without channel walls and can serve as mathematical
models for investigation of the dynamics of cooling of hot-rolled stock of round rods and plane metal or
polymer sheets. In the solutions found with f = Fo, the process is described in that part of a body which at
the moment Fo = 0 was already in the zone X > 0, while with f = X for a body which is pulled with velocity
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w0 from the zone X = 0. The mean-integral temperature from the first term of solution (26) for a round rod
cooled by convection and radiation is reduced to the form

sΘ (X, Fo, Bi)t = 
sT (X, Fo)t − (Tw − q ⁄ α)

T0 − (Tw − q ⁄ α)
 = N (Bi) 











exp [− p1
 (1) (Bi, 1) Fo] ,  X > Fo

exp [− p (1) (Bi, 1) X] ,  X < Fo










 ,

N = 
3 (Bi2 + 8 Bi + 16)
4 (Bi2 + 6 Bi + 12)

 . (27)

For small Bi numbers (Bi2 C 0) N(Bi) = 3(8Bi + 16)/4(6Bi + 12) = 1 and N(0.5) = 60/61 = 0.984, N(1) =
75/76 = 0.987, N(2) = 0.964. The unsteady abrupt decrease in the mean-integral temperature (heat content) at
different points X in convective and conductive cooling of a rod (fittings, wire, thread) pulled from the point
X = 0 (z = 0) with a constant velocity w0 calculated from formula (27) for Bi = 1 and Bi = 2 is shown in
Fig. 2.

In the case of cooling of a rod (a slab) by convection (T0 >> Tw) and radiation with incident intensity
in the form q(X) = q exp (− Pd X) a change in the temperature is determined by the formula

Θ (ξ, X, Bi, m) = 
T − (Tw − q ⁄ α exp (− Pd X))

T0 − Tw
 = 

p1
 (1) (Bi, m)
2 (m + 1)

 




Bi + 2
Bi

 − ξ2

 exp [− p1

 (1) (Bi, m) X] +

+ 
p1

 (1) (Bi, m) q ⁄ α

2 (m + 1) (T0 − Tw)
 




Bi + 2

Bi
 − ξ2



 






exp (− Pd X) + 

p1
 (1) (Bi, m) (exp (− Pd X) − exp (− p1

 (1)X))

Pd − p1
 (1) (Bi, m)







 .

In the suggested numerical-analysis method, the velocity function is used to calculate the coefficients
Bjk and Fj. It is subjected only to integration and is not differentiated anywhere; therefore, a small difference
in the velocity profiles leads to insignificant deviations in intermediate calculations and determinations of so-
lutions as a whole, as was the case in the temperature representations (18)−(23). Here, the continuous depend-
ence of calculation of the matrix elements NBN on the type of velocity is unambiguously manifested in
calculations of the eigenvalues si

(n), i = 1, n
___

, which determine the rate of stabilization of the thermoinertial
systems along the fluid flow. Stability of the algorithm to an error of the velocity-distribution function makes
it possible to implement the method by calculating the coefficients Bjk and Fj using numerical integration in
the cases where the velocity values are known at discrete points as a result of numerical solution of the
Poisson equation or are found by some other method. The multipurpose character and the efficiency of the
method lie in the fact that it can be implemented for any prescribed values of the stabilized velocity, includ-
ing the velocities in turbulent modes of flows.

Fig. 2. Change in the mean-integral unsteady temperature in a rod mov-
ing with velocity w0 for Bi = 1 and Bi = 2 at particular fixed points X.
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Let us consider the problem of heat transfer (mass transfer) in a two-dimensional running fluid layer
with height h (0 ≤ ξ = x ⁄ h ≤ 1) when the steady-state velocity of flow is equal to

 w (ξ) = W (ξ) ⁄ w0 = 1.5 (2ξ − ξ2) ,   w0 = gh2 sin β ⁄ 3ν ,   max W = W (1) = 1.5w0 , 

where β is the slope of the plane of running down toward the horizon, g is the free-fall acceleration, and ν is
the kinematic viscosity, and on the upper free surface the boundary conditions of the third kind are prescribed
and the lower wall is assumed to be adiabatic (impermeable), i.e., conditions similar to (8) are prescribed.
The procedure of implementation of the method with constant boundary loadings (ϕ(X, Fo) = Tw, ϕ0(Fo) =
T0, q(X, Fo) = q = const, f(X, Fo) = 0) leads to the representation of the solution in the first approximation

Θ (ξ, X, Fo, Bi) = 
T − (Tw + q ⁄ α)
T0 − (Tw + q ⁄ α)

 = 




Bi + 2

Bi
 − ξ2


 










M (Bi) exp [− p1
 (1) (Bi) Fo]  for  X > γ Fo

N (Bi) exp [− s1
 (1) (Bi) X]  for  X < γ Fo










 , (28)

where

p1
 (1) (Bi) = 

5 Bi (Bi + 3)
2 Bi2 + 10 Bi + 15

 ;   s1
 (1) (Bi) = 

280 Bi (Bi + 3)
3 (27 Bi2 + 154 Bi + 280)

 ;   M (Bi) = 0.5p1
 (1) (Bi) ;

N (Bi) = 
7 Bi (11 Bi + 10)

2 (27 Bi2 + 154 Bi + 280)
 ;   γ (Bi) = 

p1
 (1)

s1
 (1)  = 

3 (27 Bi2 + 154 Bi + 280)

56 (2 Bi2 + 10 Bi + 15)
 .

The largest error of this solution is attained when Bi = ∞, and with the boundary conditions of the first kind
we have

Θ (ξ, X, Fo) = 
T (ξ, X, Fo) − Tw

T0 − Tw
 = (1 − ξ2) 



1.25 exp (− 2.5 Fo)  for  X > 0.723 Fo
1.426 exp (− 3.457 X)  for  X < 0.723 Fo




 . (29)

Refinements of the lower main lines in the solutions (28) and (29) at steady-state heat loadings are reduced
to solving the system

  ∑ 

k=1

n

 ak
∗  (s) (Ajk + Bjk s) = [T0 − (Tw + q ⁄ α)] Fj ,   j = 1, n

___
 ;

therefore we provide the recurrence formulas of calculation of the coefficients:

Ajk = − ∫ 
0

1
d2ψk

dξ2  ψj dξ = 4kj 




1

2j + 2k − 1
 + 

1

Bi




 = Akj > 0 ;   Bjk = 1.5 ∫ 

0

1

(2ξ − ξ2) ψj ψk = bkbj +

+ 
3 (k + j + 2)

2 (k + j + 1) (2k + 2j + 3)
 − 

3

2
 




bj (k + 2)
(k + 1) (2j + 1)

 + 
bk ( j + 2)

( j + 1) (2k + 1)



 ;   Fj = 1.5 ∫ 

0

1

(2ξ − ξ2) ψj dξ =

= bj − 
3 (j + 2)

(2j + 2) (2j + 3)
 ;   bj = 

Bi + 2
Bi

 . (30)
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In chemical technology, use is made of apparatuses in which a thin running-down film absorbs
(desorbs) a component from the upper surrounding medium, which is dissolved in a fluid. Let the sought

concentration be equal to U(ξ, X) (instead of the temperature T(ξ, X)); then X = 
1
Pe

 
z
h

 and Pe = 
w0h
am

. The

relative concentration θ
~

(ξ, X) with boundary conditions [U(ξ, X)]X=0 = U0, [U(ξ, X)]ξ=1 = Uw, 




∂U

∂ξ


 ξ=0

 = 0 by

composing the determining systems with the aid of the coefficients (30) for Bi = ∞ and subsequent imple-
mentation of the algorithm is represented by the expression

θn (ξ, X) =  ∑ 

i=1

n

 ψi
 (n) (ξ) exp (− si

 (n)X) , (31)

where the eigenfunctions ψi
(n)(ξ) and the numbers si

(n) as the results of refinement of the lower line of solution
(29) are given in Table 1.

The mass-mean, with respect to the thickness of the thin film, concentration in the first approximation
is written as

sθ3 (X)t = 1.5 ∫ 
0

1

θ3 (ξ, X) (2ξ − ξ2) dξ = 0.788 exp (− 3.419X) + 0.134 exp (− 27.730X) +

+ 0.031 exp (− 85.442X) . (32)

An investigation of this problem in a rigorous nonalternative space leads to determination of the co-
ordinate functions by solving the Sturm–Liouville problem, whose eigenfunctions are expressed in terms of
the hypergeometric Gaussian series in the form [8]

Yi (ξ) = Bγi
1 ⁄ 2 (ξ − 1) exp 




− 
γi (ξ − 1)2

2




 F 




3

4
 − 
γi

4
 ;  

3

4
 ;  γi (ξ − 1)2




 ,

where the values of γi are the roots of the characteristic equation

γ (3 − γ) F 



3
4

 − 
γ
4

 ;  
5
2

 ;  γ

 − 3 (γ − 1) F 




3
4

 − 
γ
4

 ;  
3
2

 ;  γ



 = 0 ,

In this work, the values γ1 = 2.2631, γ2 = 6.2977, and γ3 = 10.3077 are found and the solution is given in
the form

TABLE 1. Calculation of the Relative Concentration in the Second and Third Approximations

n i ψi
(n)(ξ) si

(n)

2
1 1.4018 – 1.2516ξ2 – 0.1502ξ4 3.4477

2 – 0.6607 + 3.6009ξ2 – 2.9302ξ4 27.9894

3

1 1.3487 – 0.7542ξ2 – 1.2692ξ4 + 0.6747ξ6 3.4185

2 – 0.6412 + 3.9861ξ2 – 4.1493ξ4 + 0.8044ξ6 27.7298

3 0.5048 – 6.5677ξ2 + 15.7484ξ4 − 9.6855ξ6 85.4415
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θ (ξ, X) =  ∑ 

i=1

∞

 AiYi (ξ) exp 

− 

2
3

 γi
2X

 . (33)

According to representation (31), a sequence of numbers s1
(1), s1

(2), ..., s1
(n) must converge to the exact eigen-

value s1 = 2/3γ1
2 = 3.4144. The value s1

(1) = 3.4568 exceeds this value by 1.24%, s1
(2) = 3.4477 exceeds it by

0.95%, and s1
(3) = 3.4185 exceeds the exact value by only 0.12%. In solution (31), the poorer convergences

of the eigenfunction ψn
(m)(ξ), the number sn

(n), m ≥ n − 1, and the last term as a whole ψn
(n)(ξ) exp (−sn

(n)X) to

the value Anγn(ξ) exp 

− 

2
3

 γn
2X

 can be assigned to the higher efficiency of the suggested method in the fol-

lowing way. In solution (31), the quantity ψn
(n) exp (−sn

(n)X) contains, in addition to the value of its own spec-
trum of decomposition, the influence of the remainder, which is not taken into account in calculation by the
corresponding partial sum of the solution (33). Therefore, the solutions (31) and (32) in the third approxima-
tion, for instance, describe the process better than by the partial sum of third order of the exact solution.

In conclusion, it should be noted that the suggested numerical-analysis method of calculation by in-
terpolation of the experimentally measured temperature of the surface of a thermally thin channel wall by the
function ϕ(ξ, X, Fo), which is a result of the partial response at the boundary of conjugate heat transfer be-
tween the flowing fluid inside the channel and the external flow of the medium propagating along the ξ-axis,
allows determination of the temperature field in the channel, which makes it possible to investigate the regu-
larities of changes in the local heat flux and heat content with time and along the fluid flow by performing
differentiation and integration with respect to the elliptic coordinates ξ, η of the found solutions. Thus, it
becomes unnecessary to calculate the local and integral Nusselt numbers. In the cases where the temperature
of the transversely incident fluid flow is higher or lower than the fluid temperature in the channel, the rate
of exponential stabilizations of heat transfer under real conditions will be higher or lower, respectively, than
in the calculations of heat transfer in channels with isothermal flow.

If we set w(ξ, η) = 0 on the left-hand side of Eq. (1), we will obtain the heat-conduction equation
for long rods. Then the interpolation of the function of two variables ϕ(ξ, Fo) as a change in the temperature
on the surface of a solid prism or a body of revolution around the ξ-axis (η2 → η2 + ξ2) allows one to sim-
plify the solution of the problems of conjugate heat transfer between a solid and an incident flow of a me-
dium.

NOTATION

w0, mean integral velocity; a, thermal diffusivity; µ, dynamic viscosity; µw and µ0, viscosity in the
near-wall layer and in the core of the fluid flow, respectively; h and b, lengths of the intervals of change of
the running coordinates x, y (0 ≤ x ≤ h, −b ≤ y ≤ b) in the region D of the channel regions; z, unilateral coor-
dinate (0 ≤ z ≤ ∞) along the channel; ξ = x ⁄ h, η = y ⁄ b, X = z ⁄ hPe, relative coordinates of the running point;
t, time; Fo, Pe, and Bi, Fourier, Pe′clet, and Biot numbers related to h; W and w, dimensional and relative
local velocities of the fluid flow (w = W ⁄ w0); Θ = (T − T0)/(Tw − T0), relative excess temperature in the chan-
nel; T(ξ, η, X, Fo), temperature at the running point M(ξ, η, X) at the time Fo; Tw, temperature of the exter-
nal medium or the channel wall; m, parameter in the combined equation of heat transfer for a plane channel
(m = 0) and a round tube (m = 1); β, parameter of the geometric shape of the channel (β = h2 ⁄ b2); δ, cor-
recting parameter of the distribution nonuniformity of the reciprocal local viscosity k = µ−1 in heating (δ > 0)
and cooling (δ < 0) of the fluid and δ = 0 in isothermal flow; F, hypergeometric Gaussian series; T0, initial
temperature distribution or temperature at the channel inlet; N.N,  . , notation of the matrices and the deter-
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minants, respectively; θ
~

 = (u − uw)/(u0 − uw), relative mass concentration; am, mass-transfer coefficient; P
~

e =
W0h ⁄ am, Pe′clet number for mass transfer; s, p, parameters of double Laplace−Carson transformation; =.... , sign
of one-to-one correspondence between the inverse transform and the transform; T∗ (ξ, s), Laplace transform of
the temperature T(ξ, X) with respect to X; q, radiative flux (q > 0) or radiation (q < 0) in the generalized
boundary conditions of the third kind; sΘ(X, Fo)t, mass-mean relative temperature over the channel cross
section; −si

(n), −pi
(n) (i = 1, n

___
), simple roots of the algebraic equations  A + sB  = 0 and  A + pC  = 0; n, order

of approximation.
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